Trend Extraction for seasonal Time Series Using Ensemble Empirical Mode Decomposition

نویسندگان

  • Farouk Mhamdi
  • Jean-Michel Poggi
  • Meriem Jaïdane
چکیده

In this paper, we investigate eligibility of trend extraction through the empirical mode decomposition (EMD) and performance improvement of applying the ensemble EMD (EEMD) instead of the EMD for trend extraction from seasonal time series. The proposed method is an approach that can be applied on any time series with any time scales fluctuations. In order to evaluate our algorithm, experimental comparisons with three other trend extraction methods: EMD-energy-ratio approach, EEMD-energy-ratio approach, and the Hodrick–Prescott filter are conducted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Satellite Image Time Series Decomposition Based on EEMD

Satellite Image Time Series (SITS) have recently been of great interest due to the emerging remote sensing capabilities for Earth observation. Trend and seasonal components are two crucial elements of SITS. In this paper, a novel framework of SITS decomposition based on Ensemble Empirical Mode Decomposition (EEMD) is proposed. EEMD is achieved by sifting an ensemble of adaptive orthogonal compo...

متن کامل

Empirical Mode Decomposition and k-Nearest Embedding Vectors for Timely Analyses of Antibiotic Resistance Trends

BACKGROUND Antibiotic resistance is a major worldwide public health concern. In clinical settings, timely antibiotic resistance information is key for care providers as it allows appropriate targeted treatment or improved empirical treatment when the specific results of the patient are not yet available. OBJECTIVE To improve antibiotic resistance trend analysis algorithms by building a novel,...

متن کامل

Short Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression

The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in Adaptive Data Analysis

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2011